

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES 2021_2 Examinations..

Course Code: MTH 382

Course Title: Mathematical Methods IV
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

Q1. (a) Define each of the following:
(i) a partial differential equation ($\mathbf{2}$ marks)
(ii) order of a partial differential equation ($\mathbf{2}$ marks)
(b) Find
(i) $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)(2$ marks $)$
(ii) $\frac{\Gamma(6)}{2 \Gamma(3)}(\mathbf{3}$ marks $)$
(c) Show that $J_{-n}(x)=(-1)^{n} J_{n}(x)$ for $n=1,2,3, \ldots$ (7 marks)
(d) Solve the boundary value problem $\frac{\partial U}{\partial x}=4 \frac{\partial U}{\partial y}, U(0, y)=8 e^{-3 y}$ by method of separation of variables. (7 marks)

Q2. (a) Define a Legendre function. (2 marks)
(b) State the Rodrigue's formula. ($\mathbf{2}$ marks)
(c) Given that $P_{0}(x)=1$ and $P_{1}(x)=x$. Find using the Recurrence formula
i) $P_{2}(x)$
ii) $P_{3}(x)$
(3 marks)
(4 marks)

Q3. (a) Define each of the following:
i) an ordinary differential equation (2 marks)
ii) a Legendre equation ($\mathbf{2}$ marks)
(b) Evaluate $\int_{0}^{1} t^{4}(1-t)^{3} d t$ (4 marks)
(c) Establish that $\Gamma(\alpha+1)=\alpha$! (4 marks)

Q4. (a) Define each of the following partial differential equation:
(i) $\frac{\partial U}{\partial t}=k \nabla^{2} U \quad$ (1 mark)
(ii) $\nabla^{2} v=0(1$ mark $)$
b) Determine whether each of the following partial differential equations are linear or nonlinear. State the order of the equation and the name of the dependent and independent variables:
i) $\frac{\partial U}{\partial t}=4 \frac{\partial^{2} U}{\partial x^{2}}$
(1 mark)
ii) $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \quad$ (1 mark)
iii) $\left(\frac{\partial z}{\partial u}\right)^{2}+\left(\frac{\partial z}{\partial v}\right)^{2}=1 \quad$ (1 mark)
c) Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ by method of separation of variables. (7 marks)

Q5 (a) State the boundedness and Lipschitz conditions. (5 marks)
(b) Find $P_{n}(x)$ by the Rodrigue's formula for $n=0,1$ and 2. (7 marks)

Q6. (a) Define each of the following:
(i) Hypergeometric functions. (2 marks)
(ii) Bessel's equation of index v.(2 marks)
(b) Show that $2 F(\alpha, \beta, \beta, x)=(1-x)^{-\alpha}(4$ marks $)$
(c) Prove that $P^{\prime}{ }_{n+1}(x)=(2 n+1) P_{n}(x)+P^{\prime}{ }_{n-1}(x), n=1,2, \ldots(4$ marks $)$

