

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_1 Examination

Course Code: MTH 382 Course Title: Mathematical Methods IV Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions

Q1 (a) Define each of the following:

i)	an ordinary differential equation	(2 marks)
ii)	a Legendre equation	(2 marks)

(b) Show that if R(p) > 0 and R(q) > 0 then

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
(7 marks)

c) Using the Rodrigue's formula, find $P_n(x)$ for n = 0,1 and 2. (6 marks)

d) Solve
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 by method of separation of variables. (5 marks)

Q2 (a) State the boundedness and Lipschitz conditions. (5 marks)

(b) Show that under the stated assumptions on F, the equation $F'(x) = F[x, f(x)], f(x_0) = y_0$ has a unique solution defined in the interval $(x_0 - r, x_0 + r)$

where
$$r < \min(a, \frac{b}{M}, \frac{1}{K})$$
 (7 marks)

Q3 (a) Define each of the following:

(i) a gamma function	(2 marks)
(ii) a beta function	(2 marks)
(b) Find (i) $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$	(2 marks)
(ii) $\Gamma(1) = 1$	(3 marks)

c) Prove that $(\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$	(3 marks)
Q4 (a) Define each of the following:	
(i) Hypergeometric functions(ii) Bessel's equation of index v	(2 marks) (2 marks)
(b) Show that $2F(\alpha,\beta,\beta,x) = (1-x)^{-\alpha}$	(3 marks)
c) Find $\int_0^{\frac{\pi}{2}} J_0(z\cos\theta)\cos\theta d\theta$	(5 marks)
Q5 (a) Define a Legendre function?	(2 marks)
(b)i) State the Rodrigue's formula	(2 marks)
ii) Find $P_2(x)$ using the Rodrigue's formula	(4 marks)
c) Prove that $P'_{n+1}(x) = (2n+1)P_n(x) + P'_{n-1}(x), n = 1, 2,$	(4 marks)
Q6 (a) i) Define a partial differential equation	(1 mark)

ii)What is the name of each of the following partial differential equation?

I.	$\Delta^2 \theta = \frac{1}{c} \frac{\partial^2 \theta}{\partial t^2}$	(1 mark)
II.	$\Delta^2 \theta + f = 0$	(1 mark)
III.	$\Delta^2 \theta = 0$	(1 mark)

(b) Find the solution of the heat conduction equation $\alpha^2 u_{xx} = u_x$ with boundary

condition $u_x(0,t) = 0, u_x(l,t) = 0$ (8 marks)