

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022 2 Examination

Course Code:	MTH 382
Course Title:	Mathematical Methods IV
Credit Unit:	3
Time allowed:	3 HOURS
Instruction:	Answer Question One and any Other Three Questions

1. (a) Define Legendry function

(3 marks)

(b) Prove that

 $P_n^1 + l(x) = xP_n^1(x) + (n+1)P_n(x)$ (c) Define a Periodic Function

- (d) Consider the Laplace equation in polar co-ordinates $u = \frac{1}{z}u_2\frac{1}{2} + u_2\frac{1}{z^2}u\theta\theta$ with boundary condition $u(a, \theta) = f(\theta) f$ is a given function on $0 \le \theta \le 2\pi$ in order that u(z, 0) the single value, it is necessary that a function of θ , show that u must be periodic with period 2π .
- (2) Solve the Laplace equation

$$u_{xx} + u_{yy} = 0$$

In the rectangle $0 < x < \alpha$, 0 < y < b, and which satisfies the boundary condition. u(x, 0) = 0 u(x, b) = 0 0 < x < au(0, y) = 0 u(a, y) = f(y) $0 \le y \le b$ Where *f* is given function on $0 \le y \le b$

- (3) (a) Define the Bessel equation
 - (b) Assume that V is not an integer in the Bessel equation then show that

$$y = \sum_{n=0}^{\infty} c^m x^{m+r}$$

- (4) Show that
 - (a) $2F(\alpha,\beta,\beta,x) = (1-x)^{-\alpha}$
 - (b) $2F(1; 1; 2; -x) = \log(1 + x)$