

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2023_1 POP EXAMINATION.

Course Coo Course Titl Credit Unit Time allow Instruction	le: Mathematical Methods IV 1: 3 /ed: 3 HOURS	Three Questions
	Define the following terms (i) Hyper-geometric (ii) Legendry function Using the definition $\int_0^1 x^{m-1} (1-x)^{n-1} dx$, prove that $B(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta dx$	(2 marks) (2 marks)
2. (a)	Evaluate each of the following expressions. (i) $\frac{3\Gamma(6)}{\Gamma(4)}$ (ii) $\Gamma\left(\frac{3}{2}\right)$ Use the method of successive approximation to obtain the uation $\frac{dy}{dx} = 1 + xy$ up to the third approximation when $x_0 = 0$ (i) $I = 2 \int_0^\infty e^{-x^2} dx$ and $I = 2 \int_0^\infty e^{-y^2} dy$. By finding an expression $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	(5 marks) (5 marks) e solution of the differential $y_0 = 0$ (6 marks)
) State the Bessel of the first kind of order v .) Solve Bessel equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - v^2)y = 0$	(2 marks) (13 marks)
	State generating function for Legendre polynomials by Using the Rodrigue's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x)$ polynomials (i) $P_4(x)$	(2 marks) $(2 - 1)^n$ to the Legendr (6 marks)

(7 marks)

 $P_8(x)$

- 5. (a) By using techniques involving the Beta function, find the exact value of
 - (7 marks)
 - (i) $\int_0^1 7x^5 (1-x)^4 dx$ (ii) $\int_0^{\frac{\pi}{2}} \sin^7 \theta d\theta$ (8 marks)
- (10 marks) 6. (a) Show that the two definitions of gamma function are equivalent.
 - (b) State the relationship between gamma and beta functions.

(5 marks) If R(p) > 0 and R(q) > 0