

National Open Unversity of Nigeria Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi - Abuja Faculty of Sciences Department of Pure & Applied Science October/November, 2019 Examination

CHM423: Coordination Chemistry

CREDIT UNIT: 3 Units

TIME: 2½ HOURS

INSTRUCTION: ANSWER QUESTION ONE & ANY OTHER FOUR QUESTIONS

Question 1

(a)	State (i) Spin rule and (ii) Larporte rule.	(3 marks; 1 ½	marks each)
(b)	Identify any four contributions of Werner to Coordination c	hemistry	(4 marks)
(c)	State the Jahn Teller theory		(1 mark)
(d)	Highlight the main points of the Crystal Field Theory.		(3 marks)
(e)	What are the factors that determine the shape of complexe	es?	(3 Marks)
<i>(f)</i>	Differentiate between an electrolyte and a non-electrolyte	complex	[2 Marks]
(g)	Discuss the advantages and disadvantages of the effective	atomic number	r (EAN)
(6 ma	rks)		

Question 2

2. (a) (i) Define Lewis acid and base	[2 Marks]	
(ii) Give two examples of compounds that could act as Lewis acid	[1 Mark]	
(iii) What property makes transition metals to act as Lewis acids?	[1 Mark]	
(b) State three of the conclusions made by Werner in his contribution to coordination		
chemistry.	[3 Marks]	
(c) Explain the term Ligand.	[3 Marks]	

(d) Complete the following table

Complex	Primary Valency	Secondary Valency	Possible Shape
K ₄ [Fe(CN) ₆]		6	Octahedral
[Ag(NH ₃) ₂]Cl	+1		Linear
[Co(NH ₃) ₄ Cl ₂]Cl	+3	6	
$[\operatorname{Cu}(\mathrm{H}_2\mathrm{O})_6]^{2+}$		6	Octahedral

 $(\frac{1}{2} \max x \, 4) = (2 \text{ Marks})$

Question 3

(a) (i) Define the term 'Isomerism' in relation to complexes [2 Marks]
(ii) State four types of structural isomerism. [2 Marks]
(b) Explain the Valence Bond Theory of complexes. [4 Marks]
(c) How are coordination compounds formed according to Valence Bond Theory? [2 Marks]
(d) What are the two limitations of Valence Bond Theory of complexes? [2 Marks]

Question 4

4. (a) (i) Explain the term chelate effect of complexes [2 Marks]
(ii) Describe the stability of complexes in term of the chelate effect [2 Marks]
(b) Explain with relevant equations three methods of preparing complexes [6 Marks]
(c) What is Crystal Field in relation to metal complex? [2 marks]

Question 5

5. (a) Explain briefly the Jahn Teller distortion [4 marks]

(b) State any three of the rules for Naming Complexes [3 Marks]

(c) State the industrial application of each of the following complexes:		
(i) Rhodium complex		
(ii) Cobalt complex		
(iii) EDTA complex	[3 Marks]	
(d) Compare the infrared absorption in inorganic compounds with that of organic		
compounds.	[2 Marks]	
Question 6		
6. (a) (i) What is physical method of structural investigation?		
(ii) What does physical method of structural investigation involved?	[2 Marks]	
(ii) State two physical method of structural investigation of complexes.	[2 Marks]	
(b) State the Spin Rule.		
(c) Explain the three major types of isomerism	[3 Marks]	
(d) Write the formula of each of the following complexes		
(i) bis(oxalato)titanium(IV)		
(ii) Potassium dicyanoaurate(I) [2 x 1 mark = 2 Marks]		