

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations...

Course Code: MTH401 Course Title: General Topology Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions		
1a) Define the following terms:		
i) An open set in a metric space,	(2 marks)	
ii) An interior point in a metric space,	(2 marks)	
iii) A closed set in a metric space.b) State without prove the Cauchy schwartz's in	(2 marks) nequality. (4 marks)	
c) Show that $K = (0,2) \cap [3,4]$ is a subspace of	± •	ed. (6 marks)
d) Show that \mathbb{R}^2 is connected.	(2) a) is also since.	(6 marks)
2a) Define a metric on a nonempty set E.		(2 marks)
b) State without prove the Minkowski's inequal		(4 marks)
c) Verify that $d_{\infty}(x,y) = \max_{1 \le i \le n} \{ x_i - y_i \}$ is a n	netric on \mathbb{R}^2 .	(6 marks)
3a)Define the following terms:i.an open ball cer radius $r > 0$.iii. a close ball centred at x_0 of	_	here centred at x_0 of
b) Show that in any metric space (E, d), each of		
4a) Define the following terms:		
i) a limit of a sequence $\{x_n\}_{n=1}^{\infty}$	(2 marks)	
ii) a Cauchy sequence	(2 marks)	
iii) a subsequence of a sequence {x _n }	(2 marks)	
b) Given that $\{x_n\} = \{x_n^{(1)}, x_n^{(2)}\}$ is a sequence in	$E = (E_1, d_1) \times (E_2, d_2)$. Show the	at the following are
equivalent:	1 2 2 2	_
i) $\{x_n\}$ converges in E with respect to the metric	$c \rho_{\text{max}}$. (2 marks)	
ii) $\{x_n\}$ converges in E with respect to the metr	ic ρ_2 . (2 marks)	1

iii) $\{x_n\}$ converges in E with respect to the metric ρ_1 . iv) $\{x_n^{(1)}\}$ and $\{x_n^{(2)}\}$ converges in $\{E_1, d_1\}$ and $\{E_2, d_2\}$ respectively. (2 marks)

5a) State without prove the Pasting Lemma on the union of closed sets. (4 marks)

bi) Show that (E, d), if is a metric space, $a \in E(a \text{ fixed element})$ and $f: E \to \mathbb{R}$ such that f(x) = d(x, a) for all $x \in E$. Then f is uniformly continuous on E. (4 marks)

bii) Given that $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{for } x^2 + y^2 \neq 0 \\ 0, & \text{for } x = y = 0 \end{cases}$$

Verify the continuity of **f** at **(0,0)**.

(4 marks)

6a) Show that every compact subset of a metric is closed and bounded. (6 marks)

b)Show that every real-valued continuous function defined on a compact set is uniformly continuous.

(6 marks)