

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 1 Examinations

Course Code: MTH401

Course Title: General Topology

Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 4 Questions

1a) State without prove the Holder's inequality. (4 marks)

b) If $f: \mathbb{R}^n \to \mathbb{R}$, when is f said to be continuous at $a = (a_1 \cdots a_n)$. (4 marks)

c) Show that if (E, d) is a metric space, $a \in E(a \text{ fixed element})$ and $f: E \to \mathbb{R}$ such that f(x) = d(x, a)

for all $x \in E$. Then f is uniformly continuous on E. (6 marks)

d) Given that $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{for } x^2 + y^2 \neq 0 \\ 0, & \text{for } x = y = 0 \end{cases}$$

Verify the continuity of f at (0,0). (8 marks)

2a) Define a metric on a nonempty set **E**. (3 marks)

b) Verify that the usual metric on \mathbb{R} is a metric (5 marks)

c) State without prove the Cauchy schwartz's inequality. (4 marks)

3a) Define the following terms:

(i) an open set in a metric space (1 marks) (ii) an interior point in a metric space (1 marks) (iii) a closed set in a metric space. (1 marks)

b) Let $E = \mathbb{R}^2$ be endowed with the Euclidean metric $d_2(x,y) = (\sum_{k=1}^n |x_k - y_k|^2)^{\frac{1}{2}}$ for all $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. Describe the sets:

i) B((0,0);1) (2 marks)

ii). $\overline{\mathbb{B}}((0,0);1)$ (2 marks)

iii) S((0,0);1) where $(0,0) \in \mathbb{R}^2 n$ (2 marks)

iv). $B_r(x_0, y_0)$ for arbitrary where $x_0, y_0 \in \mathbb{R}^2$ and r > 0 (3 marks)

4a) Define the following terms

i) Cauchy Sequence' (2 marks)ii) Bounded sequence (2 marks)

iii) Cluster point

(2 marks)

b) Let (E, d), be an arbitrary metric space and let $\{x_n\}$ be a Cauchy sequence in E.

Then is bounded

(6 marks)

5a) State without prove the Pasting Lemma on union of closed sets (4 marks)

bi) Given that $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(x,y) = \begin{cases} x^{2} \sin \frac{1}{y} + y^{2} \sin \frac{1}{x}, & \text{for } x \neq 0, y \neq 0 \\ 0, & \text{for } x = 0, y = 0 \end{cases}$$

Verify the continuity of f at (0,0)

(4 marks)

bii) Given that $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = \begin{cases} x^2+1, & \text{for } x \leq 0 \\ \frac{1}{2}(x+2), & \text{for } x \geq 0 \end{cases}$$

Verify the continuity of f on \mathbb{R} .

(4 marks)

6ai) what is a connected metric space?

(2 marks)

ii) What is a connected subspace of a metric space (2 marks) bi) Show that $K = (0,2) \cap [3,4]$ is a subspace of a metric space (E, d) is disconnected.

(4 marks)

bii)Show that \mathbb{R}^2 is connected.

(4 marks)