

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

2023 1 POP EXAMINATION...

	Course	Code:	MTH	401
--	--------	-------	-----	-----

Course Title: General Topology I

Credit Unit:

Time Allowed: 3 HOURS

Instruction: ATTEMPT NUMBER ONE (1) AND ANY OTHER THREE (3)

QUESTIONS

- 1. (a) Let (E, d) be a metric space and let A be a subset of E. When is point $p \in E$ called a boundary point of A? (9 marks)
 - (b) Let E = R(the reals) with the usual metric, and let $Y = [0, 1] \cup (3, 4)$ as a subspace of E. Determine if each of the following sets is open or closed in Y.

(i)
$$A = [0, 1]$$
 (2 marks)

(ii)
$$B = (3, 4)$$
 (2 marks)

(iii)
$$C = [0, \frac{1}{2}).$$
 (2 marks)

- (iii) $C = [0, \frac{1}{2})$. (c) Prove that R^2 is connected. (10 marks)
- 2. Prove that a metric space (E, d) is connected if and only if the only subsets of E which are both open and closed are E and \emptyset . (15 marks)
- 3. (a) Prove Pasting lemma of closed sets. (8 marks)
 - (b) Let $f: R \to R$ be defined by $f(x) = x^2 + 1$, if $x \le 0$ and $f(x) = \frac{1}{2}(x+2)$, if $x \ge 0$. Show that f is continuous on R. (7 marks)
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = x^2 3xy + 5y^2 3x + 2y 1$. Show that f is continuous at (-1, 2). **(15 marks)**
- 5. Let (E, d) be an arbitrary metric space and let $\{x_n\}$ be a Cauchy sequence in E. Prove that $\{x_n\}$ is bounded. **(15 marks)**
- 6. (a) Every subsequence of a convergent sequence converges, and it converges to the same limit as does the mother sequence. (7 marks)
 - (b) Let (E_1, d_1) and (E_2, d_2) be two metric spaces and let $E = E_1 \times E_2$ denote their cartesian product, where E is endowed with its own metric. Define Euclidean metric on $E_1 \times E_2$. (8 marks)