

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES

April/May Examination 2019

Course Code:	MTH401
Course Title:	General Topology 1
Credit Unit:	3
Time allowed:	3 HOURS
Total:	70 Marks
Instruction:	ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1.	(a) Define a metric space	(4marks)
	 (b) Let R denote the set of real numbers and let d: R × R → R be defined at x, y ∈ R. Show that d is a metric on R. 	aned by $d(x, y) = x - y $ for all (6marks)
	(c) State Triangle and Hölder's inequalities	(4marks)
	(d) State and prove Minkowski's inequality.	(8marks)

2. (a) Define the following: (i) Open ball (ii) Closed ball (iii) Spheres. (5marks)

(b) Let $E = \mathbb{R}$ be endowed with the Euclidean metric.

 $d_2(X,Y) = \sum_{k=1}^k \{(X_k - Y_k)^2\}^{1/2} \text{ for all } x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$

Describe the following sets(i) $B((0,0), 1)(ii)\overline{B}((0,0), 1)(iii) S((0,0), 1)$ where $(0,0) \in \mathbb{R}^2(iv)B_r(x_o)$ for arbitrary $x_0 \in \mathbb{R}^2$. (7marks)

3. (a) Define the closure of a set . (5marks)

(b) Every singleton subset of any metric space is closed. Hence, every finite set is closed. (7marks)

- 4. (a) Let {x_n}_{n=1}[∞] be a sequence of points in a metric space (E, d). When is a point x ∈ E said to be a limit point of the sequence {x_n}? (5marks)
 (b) Show that {x_n}converges to x in E, if and only if {d(x_n, x)} converges to 0 in ℝ. (7marks)
- 5. (a) When is a sequence said to be a Cauchy in a metric space?(5marks)(b) Prove that every convergent sequence in a metric space is Cauchy.(7marks)
- 6. (a) Define a connected space (5marks)
 (b) Prove that the image of a connected space under a continuous map is connected. (7marks)