

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations..

Course Code:MTH411Course Title:Measure Theory and IntegrationCredit Unit:3Time Allowed:3 HoursInstruction:Attempt Number One (1) and any four (4) Questions

1.	(a) State Fatou's lemma	(3 marks)
(b)	Obtain m(F) given that $F = [a, b]$, $S = [a, b]$ and $C_sF = \emptyset$.	(3 marks)
(c)	Show that the measure of a bounded closed set F is non – negative.	(6 marks)
(d) Let the bounded open set G be the union of finite or denumerable number of open sets G_k (that is, $G = \bigcup_k G_k$). Show that $m(G) \le \sum_k m(G_k)$. (10 marks)		
2.	(a) State Holder's inequality.	(3 marks)
	(b) What is a point mass concentrated at x if (X, M) is a measurable space $fl \in M$?	e, $x \in X$ and (3 marks)
	(c) Let (X, fl) have finite measure. Show that $L^p \subseteq L^R$ whenever $1 \le r .$	
	Moreover, the inclusion map from L^p to L^r is continuous.	(6 marks)
3.	(a) Define a q – algebra.	(6 marks)
	(b) Show that $m(G) > \sum_{h=1}^{n} M(I_h)$ if a finite number of pairwise disjoint	open
	intervals I_1 I_2 I_n are contained in an open interval G	(6 marks)
4	4. (a) State the four conditions f must satisfy on the measurable function f: $A \rightarrow [-\infty, +\infty]$.	
		(6 marks)
	(b) Let (X, M) be a measurable space, let A be a subset of X that belongs to M, and let f and g be [-∞, +∞] - valued measurable functions on A.	
	Show that $f \lor g$ and $f \land g$ are measurable.	(6 marks)
5.	(a) State (i) Monotone Convergence theorem.	(3 marks)
	(11) Dominated Convergence theorem.	(4
	marks)	

(b) Let X be an arbitrary set. State the properties of the collection Ω of subsets of X to be called an algebra. (5 marks)

6. Let (X, M) be a measurable space, and let fl be a finitely additive measure on (X, M). Show that fl is a measure if either
(i) lim_k fl(A_k) = fl(U_k A_k) holds for each increasing sequence {A_k} of sets that belong to M. Or
(ii) lim_k fl(A_k) = 0 holds for each decreasing sequence {A_k} of sets that belong to M and satisfy ∩_k A_k = Ø.