

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examination

Course Code:MTH411Course Title:Measure Theory and IntegrationCredit Unit:3Time Allowed:3 HOURSInstruction:ATTEMPT NUMBER ONE (1) AND ANY OTHER THREE (3)QUESTIONS

1.	 (a) State Fatou's Lemma (b) Let F = [a, b], S = [a, b] and C_sF = Ø. Evaluate m(F) (c) Prove that F is a non – negative bounded closed set 	(3 marks) (4 marks) (8 marks)
_	(d) Let G be a bounded open set such that $G = \bigcup_k G_k$. Prove that $m(G) \leq \sum_k m(G_k)$.	(10 marks)
2.	(a) State Holder's inequality.	(4 marks)
	(b) Let (X, M) be a measurable space. Evaluate the point mass concert that $x \in X$ and $fl \in M$? (c) Let (X, fl) have finite measure. Prove that $L^p \subseteq L^R$, where $1 \leq r$.	ntrated at x, such (4 marks) $.(7 marks)$
3.	 (a) Briefly Explain a q – algebra. (b) Prove that m(G) ≥ ∑_{k=1}ⁿ M(l_k) over disjointed open intervals G. 	(7 marks) (8 marks)
4.	(a) What are the four conditions f must be satisfied on the measurable for $f: A \to [-\infty, +\infty]$? (8)	unction B marks)
	(b) Let f and g be measurable functions on A. Prove that $f \lor g$ and are measurable. (7)	$f \wedge g$ (marks)

5. (a) State the following theorems

(i) Monotone Convergence theorem.	(4 marks)
(ii) Dominated Convergence theorem.	(5 marks)
(b) State the four properties of the collection Ω of subsets of <i>X</i> called algebra.	(6 marks)

6. Let (X, M) be a measurable space and let it be a finitely additive measure on (X, M). Prove that it is a measure if either

(i) $\lim_{k} fl(A_k) = fl(\bigcup_k A_k)$ holds for each increasing sequence {A_k} of sets that belong to M.

(ii) $\lim_k fl(A_k) = 0$ holds for each decreasing sequence $\{A_k\}$ of sets that belong to M and satisfy $\bigcap_k A_k = \emptyset$. (15 marks)