

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2023_1 POP EXAMINATION...

Course Code:MTH 411Course Title:Measure Theory and IntegrationCredit Unit:3Time Allowed:3 HOURSInstruction:ATTEMPT NUMBER ONE(1) AND ANY OTHER THREE(3) QUESTIONS

- (a) Explain the following terms:

 (i) The measure of a bounded open set.
 (ii) The measure of a non empty bounded closed set F.
 (iii) Minkowski inequality.
 (4 marks)
 (b) Given f_n: X → ℝ is a sequence that converge pointwise to f. There exist an integrable function g such that |f_n| ≤ g. Prove that f_n and f are also integrable and lim_{n→∞} sup ∫|f_n f| = 0.
 (13 marks)
- 2. (a) Let (X, M) be a measurable space. Show that counting measure on (X, M) is a measurable space. (6 marks)
 (b) Distinguish between measurable function and Borel function with four examples. (9 marks)
 2. (a) Let (X, M, fl) be a measure space, and let f and g be extended real valued functions or (9 marks)
- 3. (a)) Let (X, M, fl) be a measure space, and let f and g be extended real-valued functions on X that are equal almost everywhere. If fl is complete and if f is measurable, explain that g is measurable. (7 marks)
 (b) Let G. G. be open sets such that G. C. G. prove that m(G.) < m(G.). (8 marks)

(b)) Let G_1 , G_2 be open sets such that $G_1 \subseteq G_2$, prove that $m(G_1) \leq m(G_2)$. (8 marks)

- 4. (a) What is a simple function? (3 marks) (b) Let $\sum_{n=1} \int_{x} |n| d fl < \infty$. Prove that $\sum_{n=1} \int_{x} (x)$ converges to f(x) on X. (12 marks)
- 5. (a) State Beppo Levi's theorem. (4 marks) (b) Let $A \subseteq B$. Prove that fl (A) \leq fl (B) satisfies fl(A) $< +\infty$, then fl(B - A) = fl(B) - fl(A). (11 marks)
- 6. (a) Using monotone convergence, prove that $\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$ (7 marks) (b) Let *fl* be Lebesque measure on \mathbb{R} and *f* is a function defined on \mathbb{R} as follows: $f(x) = \{4 \ if -3 < x < 3; 5 \ if \ 3 \le x < 7; 8 \ if \ 7 \le x < 9; 1 \ if \ -7 < x \le -3; 2 \ if \ -9 < x \le -7; 0 \ otherwise.$ Find $\int f(r) fl(dr)$. (8 marks)