

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES November Examination 2018

Course Code: Course Title: Credit Unit: Time Allowed: Total: Instruction:			MTH411 Measure Theory 3 3 HOURS 70 Marks ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS				
1. (a) Let A and B be bounded sets such that $A \leq B$. Show that:							
	(i)	M _x (A) <u>s</u>	≤M _x (B)	(5marks)			
	(ii)	M* (A) ≤	≤M ^x (B)	(5marks)			
(b) Let a bounded set E be the union of a finite number of sets E_k , prove that $M^x(E) \leq \sum_k e^{-k}$					(Ek) (6marks)		
(c.)	Suppose	airwise disioint	sets E _k . Show				
(0)	that M _x	(E) ≥∑ _k	Mx(Ek)		(6marks)		
2. (a)	Define a	simple	function and give an example	(3marks)			
(b)	Define a	a charac	teristic function	(2marks)			
(c)	Let (X, M) be a measurable space and A be a subset of X belonging to M. Let f and g be $[-\infty, +\infty]$.						
	Show th	iat fvg a	nd f∧g are measurable.	(7marks)			
3. (a) D	efine the	measu	re of a bounded set	(3marks)			
(b)	Prove th	nat m(G	$_1) \leq m(G_2)$ given that G_1 , G_2 are open sets.	(4marks)			
(c)	Let the	bound	ed open set G be the union of finite number of ope	en sets G _k . Sho	ow that m(G)		
	$\leq \sum_k m($	Gk).		(5marks)			
4. a.	Show th belongi	nat μ is ng to M	a measure if $\lim_k \mu(Ak) = \mu(\bigcup_k Ak)$, where A_k is an	increasing seq	uence of sets (4marks)		
b. c.	Prove th When is	nat lim _k a funct	$\mu(Ak)$ = 0, where A _k is a decreasing sequence of sets belion said to be measurable? Give an example of a function	onging to M n that is Borel m	(4marks) easurable? (4marks)		

5. a	What do you understand by the outer measure of a bounded set E?	(3marks)
b.	Define the least upper bound of the measures of all closed sets.	(3marks)

- c. Discuss the statement "a set is measurable" (6marks)
- 6 a. Define a set function (3marks)
 - b. When is a measurable space said to be countable additive? And when is it finitely additive? (6marks)
 - c. Define a measurable space (3marks)