NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS

October Examination 2019

Course Code: MTH 411

Course Title: Measure Theory and Integration

Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Question Number One and Any other Four Questions

1. (a) Define outer and inner measures of bounded sets.
(b) Show that for any bounded set $\mathrm{E}, m_{*}(E) \leq m^{*}(E)$.
(c) Let $\mathrm{G}_{1}, \mathrm{G}_{2}$ be open sets such that $G_{1} \subseteq G_{2}$. Show that $m\left(G_{1}\right) \leq m\left(G_{2}\right)$.
2. (a) Show that $m(G) \geq \sum_{k=1}^{n} M\left(I_{k}\right)$ if a finite number of pairwise disjoint open intervals $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots \mathrm{I}_{\mathrm{n}}$ are contained in an open interval G.
(b) Suppose that $f 1$ is a Lebesque measure and that f is defined as follows:

$$
\begin{align*}
& \mathrm{f}(\mathrm{x})=\{3 \text { if }-2<x<2 ; 4 \text { if } 2 \leq x<6 ; 6 \text { if } 6 \leq x<11 ; 1 \text { if }-6<x \leq-2 ; 2 \\
& \text { if }-11<\mathrm{x} \leq-6 ; 0 \text { otherwise. Find } \int f(r) f 1(d r) \tag{6marks}
\end{align*}
$$

3. (a) State Fatou's lemma.
(b) Let the bounded open set G be the union of finite or denumerable number of open sets
G_{k} (that is, $G=\mathrm{U}_{k} G_{k}$). Show that $m(G) \leq \sum_{K} m\left(G_{k}\right)$.
4. (a) Define the measure of a non - empty bounded closed set F.
(b) Obtain $m(F)$ given that $\mathrm{F}=[\mathrm{a}, \mathrm{b}], \mathrm{S}=[\mathrm{a}, \mathrm{b}]$ and $\mathrm{C}_{\mathrm{s}} \mathrm{F}=\emptyset$.
(c) Show that the measure of a bounded closed set F is non - negative.
5. (a) State Minkowski's Inequality (3 marks)
(b) Let $f_{n}: X \rightarrow[0, \infty]$ be non - negative measurable functions. Show that $\int \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int f_{n} .($ Beppo - Levi $)$
(c) Let $(\mathrm{X}, \mathrm{M}, \mathrm{fl})$ be a measure space and let A and B be subsets of X that belong to M and satisfy $\mathrm{A} \subseteq B$. Show that $\mathrm{fl}(\mathrm{A}) \leq \mathrm{fl}(\mathrm{B})$. If in addition A satisfies $\mathrm{fl}(\mathrm{A})<+\infty$, then $\mathrm{fl}(\mathrm{B}-\mathrm{A})=\mathrm{fl}(\mathrm{B})-\mathrm{fl}(\mathrm{A})$. (5 marks)
6. (a) Define a q - algebra (4 marks)
(b) Give four (4) examples of a q - algebra
