

FACULTY OF SCIENCES 2021 Examinations

MTH417
Electromagnetic Theory
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) State the free-space set (differential and integral forms) of Maxwell's equations

(11 marks)

(b) Given
$$H = H_m e^{i(\omega t + \beta z)} a_x$$
 in free space, find **E**. (11 marks)

2. Given the equation $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ for electric field intensity, derive the wave equation for \vec{E} . (12 marks)

3. From the Maxwell's equations, derive the wave equation for the magnetic field \vec{B} .

(12 marks)

- 4. Given $E = E_m \sin(\omega t \beta z)a_y$ in a free space, find D,B and H (12 marks)
- 5. Show that $E = E_m \sin(\omega t \beta z)a_y$ and $H = -\frac{\beta E_m}{\omega \mu_0} \sin(\omega t \beta z)a_x$ fields constitute a wave traveling in the z-direction. Verify that the wave speed and E/H depend only on the properties of free space. (12 marks)
- 6. State the general set (differential and integral forms) of Maxwell's equations

(12 marks)