

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 Examination

Course Code:	MTH421
Course Title:	Ordinary Differential Equations
Credit Unit:	3
Time Allowed	: 3 Hours
Total:	70 Marks
Instruction:	Answer Question Number One and Any Other Four Questions

1 (a)	Define the following	
1. (a)	Define the following	

i.	Initial value problem (IVP)	(3 marks)
ii.	Domain	(1 mark)
iii.	Closed Domain	(1 mark)

(b) . Find the total differentials of the following functions:

(i)
$$u(x,y) = x^2 \cos x + 3x^2 y^3$$
. (2 marks)
(ii) $p(x,y) = 2x^3 y^2 + xy^3$. (2 marks)
(iii) $m(x,y) = 3x^2 y^5 + 7x^3 y^2$. (2 marks)

ii. Solve the IVP using integrating factor y' = 3y, y(0) = 5.7. (6 marks)

2. (a) Solve the ODE
$$y' = 1 + y^2$$
. (4 marks)

(b) Find the particular solution to the IVP: y' = ky, $y(0) = y_0$. (4 marks)

(c) Differentiate:

i.
$$n(x,y) = 7x^4y - 5xy$$
. (2 marks)
ii. $q(x,y) = \sqrt{2}x^2 + y$. (2 marks)

3. (a) Solve the ODE:
$$\cos(x + y) dx + (3y^2 + 2y + \cos(x + y)) dy = 0$$
 (6 marks)

(b) Find the general solution to the ODE:
$$\left(x^2y + \frac{1}{3}y^3\right)dx + \left(\frac{1}{3}x^3 + xy^2\right)dy = 0$$
.

- 4. (a) Obtain the solution to the following equation: $\frac{1}{8}xy^8dx + \frac{1}{2}x^2y^7dy = 0$. (6 marks)
 - (b) Find the particular solution to the initial value problem: y'' + y = 0, y(0) = 3, y'(0) = 0.5. (6 marks)
- 5. (a) Solve the 2nd-order ODE: y'' + y' 2y = 0, y(0) = 4, y'(0) = 5.
 - (b) Obtain the particular solution to:

$$y'' + y' + 0.25y = 0$$
, $y(0) = 3.0$, $y'(0) = 3.5$. (6 marks)

- 6. (a) Find the general solution to: y'' + 0.4y' + 0.4y = 0. (5 marks)
 - (b) Solve the following system of ODEs:

$$y_1' = 8y_1 - y_2,$$

 $y_2' = y_1 + 10y_2.$

(7 marks)