NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS
 2021 EXAMINATION

Course Code: MTH423
Course Title: Integral Equations
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question Number One and Any Other Four Questions

1. (a) i. Define the three types of Volterra integral equations
(3 marks)
ii. State three properties of Volterra integral equations. (3 marks)
(b) . i. What is a degenerate Kernel?
(2 marks)
ii. When is the set of orthogonal system $\left\{\phi_{n}\right\}$ said to be complete? (4 marks)
iii. When is a Kernel said to be positive?
(3 marks)
iv. State the Hilbert-Schmidt Theorem.
(3 marks)
(c) Find the solution to the integral equation:

$$
\frac{a}{a^{2}+x^{2}}=\int_{0}^{\infty} \cos \omega x \phi(\omega) d \omega, \quad a>0
$$

(4 marks)
2. (a) Solve the integral equation:

$$
\int_{0}^{x} \sin x(x-y) d y=1-\cos \beta x .
$$

(6marks)
(b) Form the integral equation corresponding to the IVP:

$$
\begin{equation*}
y^{\prime \prime}+2 x y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{6marks}
\end{equation*}
$$

3. (a) Solve the integral equation:

$$
\phi(x)=\lambda \int_{0}^{\infty} \cos \omega x \phi(\omega) d \omega, \phi(x) \text { is an even function of } x
$$

(6 marks)
(b) Obtain the solution to the integral equation:

$$
\phi(x)=f(x)+\lambda\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\infty} \cos x y \phi(y) d y .
$$

(6 marks)

4. (a) Using $\phi_{0}(x)=x$ as a first approximation, solve the integral equation:

$$
\phi(x)=x+\lambda \int_{0}^{\infty} \phi(s) d s
$$

(b) Solve the integral equation:

$$
\phi(x)=x^{2}+\lambda \int_{0}^{\infty} x^{3} s^{2} \phi(s) d s
$$

5. (a) Solve the integral equation:

$$
\phi(x)=x^{5}+\int_{0}^{\infty} x s^{2} \phi(s) d s
$$

(b) Find the solution of the integral equation:

$$
u(x)=e^{x}+\frac{1}{e} \int_{0}^{\infty} u(y) d y
$$

by the method of successive approximations.
6. (a) Find the eigenvalues and the corresponding eigenfunctions of the following homogeneous Fredholm integral equation

$$
y(x)=\lambda \int_{0}^{1}(\sin \pi x \cos \pi t) y(t) d t .
$$

(6 marks)
(b) Show that the following homogeneous Fredholm integral equation has no eiigenvalues and no eigenfunctions:

$$
y(x)=\lambda \int_{0}^{1}(3 x-2) t y(t) d t .
$$

