DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS

COURSE CODE:

COURSE TITLE: CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY457

ENVIRONMENTAL PHYSICS
3
($\mathbf{2 1}^{1} 2 \mathrm{HRS}$)
Answer question 1 and any other four questions

QUESTION 1

a.(i) Write short note on the energy cycle. 4 Marks
(ii) List the three (3) types of weathering. $\mathbf{3}$ Marks
b.(i) Write the required set of equations of motion in a many-body problem. 4 Marks
(ii) The energy conservation equation of the system is given by

$$
\frac{1}{2} v^{2}-\frac{\mu}{r}=C
$$

Write the meaning of each term.
3 Marks
c.(i) Briefly explain fossil-fuel steam plants. 4 Marks
(ii) Differentiate between adiabatic atmosphere and isothermal atmosphere.

QUESTION 2

a. Mention all the objects contains in the solar system.

4 Marks
b. Estimate the value of a (the mean radius of the earth's orbit) given that $T \approx 365.256$ mean solar days, $m_{2} \approx \frac{1}{354710}$ solar masses and $k \approx 0.01721$.

4 Marks
c. A satellite orbiting at a height of 576 km above the surface of the earth. What must the orbital speed of satellite be if it is to remain in a circular orbit?

4 Marks

QUESTION 3

a. At what height above the surface of the earth must all synchronous satellites be placed in orbit? ($\mathrm{T}=8.64 \times 10^{4} \mathrm{~s}, R=6400 \mathrm{k}$)

6 Marks
b. Briefly describe the process of data collection using remote sensing.

4 Marks
c. Give the classification of remote sensing.

2 Marks

QUESTION 4

a. All synchronous satellites are put into orbit whose radius $\mathrm{r}=4.23 \times 10^{7} \mathrm{~m}$. The orbit is in the plane of the equator. The arc length s that separates two adjacent synchronous satellites is $7.4 \times 10^{5} \mathrm{~m}$. Find the angular separation of the satellites in degrees. 5 Marks
b. Differentiate between passive remote sensing and active remote sensing. 4 Marks
c. In finding the solution to the two-body problem, consider two bodies of masses m_{1} and m_{2} separated by a linear displacement r . State the expression for the Newton's second law of motion and also represent the information using diagram.

3 Marks

QUESTION 5

a. Derive the angular momentum integral.

6 Marks
b. Write the mathematical form of Kepler's second law.

2 Marks
c. The orbit of a satellite about the earth is classified by the value of the eccentricity e, copy and complete the following table.

4 Marks

1	$0<e<1$	The orbit is an ellipse
2	$e=1$	
3	$e>1$	
4		The orbit is a circle

QUESTION 6

a. Write the equations of next three integrals (of the area), $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3}. 5 Marks
b. The terrestrial atmosphere contains gases, clouds and other airborne particles called aerosols. Copy and complete the following table.

3 Marks

Nitrogen	
	21%
Other gases	

c. Write short note on pressure-gradient winds.

4 Marks

