The Euclidean metric on \(\mathbb{R}^n\) is defined as

The Euclidean metric on \(\mathbb{R}^n\) is defined as

\(d(x,y)=\sum_{i=1}^{n}\left|x_i-y_i\right|\)

—>> \(d_2(x,y)=\left(\sum_{i=1}^{n}\left|x_i-y_i\right|^2\right)^{\frac{1}{2}\)

\(d_{\infty}(x,y)=max_{1leq ileq n}\left{\left|x_i-y_i\right|\right}\)

\(d_{\infty}(x,y)=min_{1leq ileq n}\left{\left|x_i-y_i\right|^{\frac{1}{2}}\right}\)

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link