# The Euclidean metric on \(\mathbb{R}^n\) is defined as

The Euclidean metric on \(\mathbb{R}^n\) is defined as

\(d(x,y)=\sum_{i=1}^{n}\left|x_i-y_i\right|\)

—>> \(d_2(x,y)=\left(\sum_{i=1}^{n}\left|x_i-y_i\right|^2\right)^{\frac{1}{2}\)

\(d_{\infty}(x,y)=max_{1leq ileq n}\left{\left|x_i-y_i\right|\right}\)

\(d_{\infty}(x,y)=min_{1leq ileq n}\left{\left|x_i-y_i\right|^{\frac{1}{2}}\right}\)