# Let \(1 \leq p \leq + \infty\) . If for arbitrary \(x = \{x_k\}, y = \{y_k\} in \(l_p\) and \(\lambda \in K\), define vector addition and scalar multiplication componentwise then \(l_p\) is a \(\hspace{1.0cm}\) space.

Let \(1 \leq p \leq + \infty\) . If for arbitrary \(x = \{x_k\}, y = \{y_k\} in \(l_p\) and \(\lambda \in K\), define vector addition and scalar multiplication componentwise then \(l_p\) is a \(\hspace{1.0cm}\) space.

nonlinear

—>> linear

real

complex