The Holder’s inequality states that: if \(1\leq p,q<\infty,\frac{1}{q}+\frac{1}{q}=1\) and if \(x_k,y_k,k=1,2,cdots,n\) are complex numnbers then

The Holder’s inequality states that: if \(1\leq p,q<\infty,\frac{1}{q}+\frac{1}{q}=1\) and if \(x_k,y_k,k=1,2,cdots,n\) are complex numnbers then

\(\left(\sum_{k=1}^{n}\left|x_k+y_k\right|^{p}\right)^{\frac{1}{p}\leq\left(\sum_{k=1}^{n}\left|x_k\right|^{p}\right)^{\frac{1}{p}+\left(\sum_{k=1}^{n}\left|y_k\right|^{p}\right)^{\frac{1}{p} \)

\(\left(\sum_{n=1}^{n}\left|x_k+y_k\right|^{p}\right)^{r}\leq\left(\sum_{k=1}^{n}\left|x_p\right|^{p}\right)^{\frac{1}{2}+\left(\sum_{k=1}^{n}\left|y_p\right|^{p}\right)^{\frac{1}{2} \)

—>> \(\left(\sum_{k=1}^{n}\left|x_k+y_k\right|^{p}\right)^{\frac{1}{p}\leq\left(\sum_{k=1}^{n}\left|x_k\right|^{p}\right)^{\frac{1}{p}+\left(\sum_{k=1}^{n}\left|y_k\right|^{q}\right)^{\frac{1}{q} \)

\(\left(\sum_{k=1}^{n}\left|x_k+y_k\right|^{p}\right)^{\frac{1}{p}\leq\left(\sum_{k=1}^{n}\left|x_p\right|\right)^{\frac{1}{p}+\left(\sum_{k=1}^{n}\left|y_p\right|\right)^{\frac{1}{q} \)

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link
%d bloggers like this: